MAKALAH IPA TENTANG NITROGEN

tatang suryana

KATA PENGANTAR
Puji syukur kami penjatkan kehadirat Alloh SWT, yang atas rahmat-Nya maka kami dapat menyelesaikan penyusunan makalah yang berjudul “NITROGEN”.
Penulisan makalah adalah merupakan salah satu tugas dan persyaratan untuk menyelesaikan tugas mata pelajaran IPA di SMK PAKUAN LEMBANG.
Dalam Penulisan makalah ini penulis merasa masih banyak kekurangan-kekurangan baik pada teknis penulisan maupun materi, mengingat akan kemampuan yang dimiliki kami. Untuk itu kritik dan saran dari semua pihak sangat kami harapkan demi penyempurnaan pembuatan makalah ini.
Dalam penulisan makalah ini penulis menyampaikan ucapan terima kasih yang tak terhingga kepada pihak-pihak yang membantu dalam menyelesaikan penelitian ini, khususnya kepada :
1.      Bapak Huda selaku Guru Mata Pelajaran yang telah meluangkan waktu, tenaga dan pkiran dalam pelaksanaan bimbingan, pengarahan, dorongan dalam rangka penyelesaian penyusunan makalah ini
2.      Rekan-rekan satu kelompok di Kelas XI C TKJ SMK PAKUAN LEMBANG
3.      Secara khusus kami menyampaikan terima kasih kepada keluarga tercinta yang telah memberikan dorongan dan bantuan serta pengertian yang besar kepada kami, baik selama mengikuti pelajaran maupun dalam menyelesaikan makalah ini
4.      Semua pihak yang tidak dapat disebutkan satu persatu, yang telah memberikan bantuan dalam penulisan makalah ini.
Akhirnya kami berharap semoga Allah memberikan imbalan yang setimpal pada mereka yang telah memberikan bantuan, dan dapat menjadikan semua bantuan ini sebagai ibadah, Amiin Yaa Robbal ‘Alamiin



                                                                                                            Lembang, Juli 2012                


                                                                                                                        penyusun









DAFTAR ISI


KATA PENGANTAR……………………………………………………………….1

DAFTAR ISI ……………………………………………………………………...… 2

BAB I PENDAHULUAN……………………………………………………………3

BAB II  PEMBAHASAN ………………………………………………..….………4

BAB III  TEORI……………………………………………………….……………17

BAB IV   KESIMPULAN DAN PENUTUP……………………….………………19

DAFTAR PUSTAKA  ……………………………………………………………..21





























BAB I
PENDAHULUAN

LATAR BELAKANG

Nitrogen merupakan elemen yang sangat esensial, menyusun bermacam-macam persenyawaan penting, baik organik maupun anorganik. Nitrogen menempati porsi 1-2 % dari berat kering tanaman. Ketersediaan nitrogen dialam berada dalam beberapa bentuk persenyawaan, yaitu berupa N2 (72 % volume udara), N2O, NO, NO2, NO3 dan NH4+. Di dalam atanah, lebih dari 90% nitrogen adalah dalam bentuk N-organik.
Asimilasi nitrogen dan sulfur membutuhkan serangkaian reaksi biokimia yang komplek yang membutuhkan energi. Asimilasi kation melibatkan pembentukkan komplek dengan senyawa organik. Pada makalah  ini diulas mengenai reaksi primer untuk asimilasi dua unsur hara utama nitrogen dan sulfur.
Unsur nitrogen di dalam tanaman dijumpai dalam bentuk anorganik atau organik yang bergabung denagn C, H, O dan kadangkala dengan S untuk membentuk asam amino , asam nukleat, klorofil, alkanoid, dan basa purin. Unsur N tersebut berkorelasi sangat erat dengan perkembangan jaringan meristem, sehingga sangat menentukan pertumbuhan dan perkembangan tanaman.
Siklus nitrogen dari fiksasi N2-atmosfer secara fisik/kimiawi yang menyuplai tanah bersama presipitasi, dan oleh mikroorganisme baik secara simbiotik maupun nonsimbiotik yang menyuplai tanah baik melaliu inangnya maupun setelah mati. Sel-sel mati ini bersama dengan sisa tanaman/hewan akan menjadi bahan organic yang siap didekomposisikan dan melalui serangkaian proses mineralisasi (aminisasi, amonifikasi, dan nitrifikasi) akan melepaskan N-mineral (NH4+ dan NO3-) yang kemudian di immobilisasi oleh tanaman atau mikrobia.













BAB II
PEMBAHASAN


·         SEJARAH NITROGEN

            Pada tahun 1772, Hanry Cavendish ( 1731 – 1810 ) mengemukakan bahwa komponen penyusun udara terbanyak adalah mephitic air. Dua tahun kemudian joseph priestley ( 1773 – 1804 ) menemuka komponen udara lain, yaitu apa yang disebutnya vital air.
            Penemuan kedua ilmuan inggris di atas mendorong Antoine lourent Lavoisier ( 1743-1794 ) di prancis untuk melakukan eksperimen. Lavoisier memanaskan merkuri (raksa) dalam tabung tertutup . Ternyata merkuri bersenyawadengan seperlima bagian udara, membentuk suatu serbuk merah (yg sekarang di sebut merkuri oksida). Empat perlima bagian sisa udara tetap berupa gas. Lavoisier mengamati bahwa dalam gas sisa itu lilin tak dapat menyala serta tikus tak dapat hidup lama.
            Maka, lavoisier menyimpulkan bahwa udara tersusun dari dua jenis gas. Jenis gas yang pertama sangatberguna bagi kehidupan dan pembakaran dan jumlahnya meliputi seperlima bagian udara. Inilah vital air yang di kemukakan oleh Priestley. Gas Vital air ini oleh Lavoisier diberi namaoksigen.
            Adapun jenis gas yang kedua, yang meliputi empat perlima bagian udara,merupakan gas mephitik air yang ditemukan ole( h cavendish. Lavoisier sendiri memberi nama azote (dalam bahasa yunani) yang berarti” tiada kehidupan ”. Kemudian abad ke -19,nama azote diganti menjadi nitrogen yang artinya pembentuk ”niter”. Niter adalah nama lama untuk kalium nitrat, KNO3, suatu zat yang sejak zaman purba dipakai sebagai zat pengawet

·         PENGERTIAN NITROGEN

Nitrogen merupakan suatu bagian dari sel hidup dan bagian utama dari semua protein, enzim dan proses metabolik yang disertakan pada sintesa dan perpindahan energi. Nitrogen itu sendiri merupakan unsur yang penting untuk seluruh  proses dalam tumbuhan. Pengambilan N oleh tumbuhan telah dipelajari oleh Morot-Gaudry (1997); kekurangan N menyebabkan terhambatnya pertumbuhan tanaman baik secara alami  maupun pada pertanian. Nitrogen banyak terdapat pada bagian klorofil, yang merupakan pewarna hijau dari tanaman yang bertanggung jawab terhadap fotosintesis. Nitrogen merupakan unsur yang diperlukan untuk membentuk senyawa penting di dalam sel, termasuk protein, DNA dan RNA.  Nitrogen adalah komponen utama dalam semua asam amino, yang nantinya dimasukkan ke dalam protein,  protein adalah zat yang sangat kita butuhkan dalam pertumbuhan. Gas nitrogen banyak terdapat di atmosfer, yaitu 80% dari udara. Nitrogen bebas dapat ditambat/difiksasi terutama oleh tumbuhan yang berbintil akar (misalnya jenis polongan) dan beberapa jenis ganggang. Nitrogen bebas juga dapat bereaksi dengan hidrogen atau oksigen dengan bantuan kilat/ petir. Nitrogen terdapat dalam berbagai macam bentuk, yaitu:
1.  Bentuk gas: dinitrogen oksida (N2O), oksida nitrogen (NOx), dan ammonia (NH3)
2.   Bentuk ion: nitrat (NO3-) dan ammonium (NH4+)
3.  Senyawa organik: urea [CO(NH2)2], protein, enzim, humus (Laegreid et al, 1999).

·         PERANAN  NITROGEN

Ada beberapa peranan nitrogen terhadap pertumbuhan tanaman diantaranya adalah:
1.  Memacu pertumbuhan tanaman secara umum terutama pada fase vegetative, berperan dalam pembentukan klorofil, dan merangsang perkembang biakan mikroorganisme.
2. Peranan nitrogen dalam tanaman yaitu mensintesis karbohidrat menjadi protein dan protoplasma (melalui mekanisme respirasi) yang berperan dalam pembentukan jaringan fegetatif tanaman.
3. Peranan nitrogen dalam tanah yaitu nitrogen diserap tanaman dalam bentuk nitrat (NO3) dan ammonium (NH4), akan tetapi nitrat akan segera tereduksi menjadi amonium melalui enzim yang mengandung Mo.
Amonium merupakan sumber nitrogen bagi tumbuhan yang hidup di tanah masam, terutama tanah humus, nitrat, merupakan sumber nitrogen bagi tumbuhan yang hidup di tanah netral atau basa selanjutnya organic, merupakan sumber nitrogen bagi tumbuhan yang hidup di tanah organic. Nitrogen udaram merupakaan sumber nitrogen bagi tumbuhan yang bersimbiosis dengan organisme penambat nitrogen.

·         KEKURANGAN UNSUR HARA NITROGEN (N)

Beberapa gejala jika tanaman kekurangan unsur nitrogen (N):
§  Warna daun hijau agak kekuning-kuningan dan pada tanaman padi warna ini mulai dari ujung daun menjalar ke tulang daun selanjutnya berubah menjadi kuning lengkap, sehingga seluruh tanaman berwarna pucat kekuning-kuningan. Jaringan daun mati dan inilah yang menyebabkan daun selanjutnya menjadi kering dan berwarna merah kecoklatan.
§  Pertumbuhan tanaman lambat dan kerdil
§  Perkembangan buah tidak sempurna atau tidak baik, seringkali masak sebelum waktunya
§  Dapat menimbulkan daun penuh dengan serat, hal ini dikarenakan menebalnya membran sel daun sedangkan selnya sendiri berukuran kecil-kecil
§  Dalam keadaan kekurangan yang parah, daun menjadi kering, dimulai dari bagian bawah terus ke bagian atas.

·         ASIMILASI
Asimilasi adalah transport komponen metabolik terlarut dari luar ke dalam lingkungan sel, baik secara pasif (difusi) maupun transport aktif.
 Asimilasi nitrogen
§  Mekanisme Asimilasi Nitrogen pada Tanaman
Proses di mana nitrogen diambil oleh tanaman untuk sintesis protein disebut asimilasi nitrogen. Tanaman yang tinggi menyerap nitrogen nitrat lebih banyak. Oleh karena itu nitrogen  harus ditransformasikan ke dalam bentuk nitrat yang tersedia. Kemudian nitrat setelah memasukkan ke dalam akar dikonversi atau dikurangi menjadi jaringan yang digunakan membuat berbagai senyawa organik.
Tanaman mendapatkan nitrogen dari tanah melalui absorbsi akar baik dalam bentuk ion nitrat atau ion amonium. Sedangkan hewan memperoleh nitrogen dari tanaman yang mereka makan. Tanaman dapat menyerap ion nitrat atau amonium dari tanah melalui rambut akarnya. Jika nitrat diserap, pertama-tama direduksi menjadi ion nitrit dan kemudian ion amonium untuk dimasukkan ke dalam asam amino, asam nukleat, dan klorofil. Pada tanaman yang memiliki hubungan mutualistik dengan rhizobia, nitrogen dapat berasimilasi dalam bentuk ion amonium langsung dari nodul. Hewan, jamur, dan organisme heterotrof lain mendapatkan nitrogen sebagai asam amino, nukleotida dan molekul organik kecil.
Ada beberapa sumber nitrogen yang dapat diambil tumbuhan yakni NO3, NH4+, N-organik dan N2, terutama pada bakteri dan algae tertentu. Pada tumbuhan tinggi umumnya, sumber nitrogen yang paling banyak diserab adalah NO3 dan NH4+ dan beberapa N-organik.
Pada tumbuhan tinggi umumnya, sumber terpenting nitrogen adalah ion nitrat (NO3=) yang diambil dari larutan tanah. Di dalam tanah, spesiasi ion nitrat tidaklah stabil. Dalam situasi aerobik, ion nitrogen lebih banyak dalam bentuk nitrat. Sebaliknya, dalam suasana anarobik, nitrat akan tereduksi secara bertahap menjadi ion amonia (NH4+). Bakteri nitrifikasi dan denitrifikasi berperan pada proses konversi tersebut. Di alam dikenal ada banyak bakteri terlibat dalam konversi nitrat menjadi amonia, atau sebaliknya. Proses-proses pengubahan dari amonia menjadi nitrat disebut nitrifikasi. Sebaliknya, terjadi peristiwa pengubahan nitrat , nitrit menjadi amonia atau N2 yang disebut denitrifikasi. Proses nitrifikasi melibatkan bakteri nitrosomonas dan nitrobakter. Pada proses pembusukan dari senyawa N-organik, akan dihasilkan ion-ion amonia, yang prosesnya disebut amonifikasi.
Yang dibutuhkan dalam asimilasi nitrogen yaitu :
À              Memerlukan cadangan sumber energi
À              Energi berasal dari fotosintesis
À              Reaksi terjadi pada jaringan dan kompartemen sel yang berbeda.
À              Berkaitan erat dengan metabolisme karbon.

·         FIKSASI NITROGEN
Pertama nitrogen atmosfer baik non-symbiotically atau symbiotically diubah menjadi nitrat dan membuatnya tersedia di tanah atau bintil akar. Beberapa pohon hidup bakteri seperti Azatobacter, clostridium, chlorobium dan beberapa bakteri simbiotik seperti rhizobium ganggang hijau biru seperti bantuan nostoc dalam fiksasi nitrogen.
Fiksasi nitrogen keahlian dari prokariotik yang luar biasa dimana gas nitogen atmosfer merupakan (N2) dikombinasikan dengan kedalam bentuk ammonia (NH3). Proses vital ini mendekati proses nitrifikasi (pembentukan amonia dari pemecahan protein) menjadikan nitrogen tersedia untuk tanaman autotrofik dan untuk semua anggota ekosistem.
Fiksasi atau penambatan nitrogen merupakan proses reduksi N2 menjadi NH4, dan proses ini hanya bisa dilakukan oleh mikroba prokariota. Pada polong-polongan yang berperan dalam fiksai N2 dalam akar adalah spesies bakteri dari genus Rhizobium. Rhizobium adalah bakteri aerob yang bertahan sebagai saprofit dalam tanah hingga menginfeksi bulu akar atau merusak sel epidermis. Hubungan simbiotik antar Legum dengan bakteri pemfiksasi nitrogen adalah mutualistik. Keduanya memperoleh keuntungan. Bakteri menyediakan nitrogen terfiksasi bagi legum, dan tumbuhan menyediakan karbohidrat dan senyawa organik lain untuk bakteri. Sebagian besar amonium yang dihasilkan melalui fiksasi nitrogen simbiotik digunakan oleh bintil untuk membuat asam amino, yang kemudian diangkut ke tunas dan daun melalui xylem. Koevolusi pasangan yang sangat indah ini jelas terlihat dalam kerjasama sintesis suatu molekul yang disebut leghemoglobin, dengan tumbuhan dan bakteri masing-masing membuat satu bagian molekul tersebut. Leghemoglobin adalah suatu protein yang mengandung besi, seperti hemoglobin sel darah merah manusia, berikatan secara reversibel dengan oksigen. Warna kemerahan bintil kacang kedelai disebabkan oleh leghemoglobin. Leghemoglobin bintil akar ini berperan sebagai ”buffer” oksigen, yang mengatur persediaan oksigen untuk meningkatkan respirasi yang diperlukan oleh bakteri untuk menghasilkan ATP untuk fiksasi nitrogen.

 new-picture-4.png

Gambar 2: perkembanagan bintil akar kedelai
1.      Akar menghasilkan sinyal kimia yang menarik bakteri Rhizobium. Bakteri ini kemudian akan menghasilkan sinyal yang merangsang rambut akar untuk memanjang, dan membentuk suatu benang infeksi melalui suatu invaginasi atau penonjolan ke rah dalam membran plasma.
2.      Bakteri menembus korteks akar di dalam benang infeksi. Sel korteks akar dan perisikel stele mulai terbelah, dan kantung yang mengandung bakteri itu memisah ke sel kortikal dari benang infeksi yang bercabang. Membrab kabtung merupakan invaginasi dari membran plasa sel-sel akar.
3.      Pertumbuhan terus berlangsung pada bagian korteks dan perisikel yang terpengaruh. Kedua masa sel-sel yang membelah ini menyatu untuk membentuk bintil akar.
4.      Bintil terus tumbuh, dan jaringan pembuluh menghubungkan bintil dengan xylem dan floem stele itu sekarang berkembang. Jaringan pembuluh ini menyediakan zat-zat makanan bagi bintil dan membawa senyawa bernitrogen dari bintil kedalam stele untuk di distribusi hingga kebagian tumbuhan lain.
Fiksasi nitrogen adalah proses alam, biologis atau abiotik yang mengubah nitrogen di udara menjadi ammonia (NH3). Mikroorganisme yang mem-fiksasi nitrogen disebut diazotrof. Mikroorganisme ini memiliki enzim nitrogenaze yang dapat menggabungkan hidrogen dan nitrogen. Reaksi untuk fiksasi nitrogen biologis ini dapat ditulis sebagai berikut :
N2 + 8 H+ + 8 e− → 2 NH3 + H2
Mikro organisme yang melakukan fiksasi nitrogen antara lain : Cyanobacteria, Azotobacteraceae, Rhizobia, Clostridium, dan Frankia. Selain itu ganggang hijau biru juga dapat memfiksasi nitrogen. Beberapa tanaman yang lebih tinggi, dan beberapa hewan (rayap), telah membentuk asosiasi (simbiosis) dengan diazotrof. Selain dilakukan oleh mikroorganisme, fiksasi nitrogen juga terjadi pada proses non-biologis, contohnya sambaran petir. Lebih jauh, ada empat cara yang dapat mengkonversi unsur nitrogen di atmosfer menjadi bentuk yang lebih reaktif :
1.      Fiksasi biologis: beberapa bakteri simbiotik (paling sering dikaitkan dengan tanaman polongan) dan beberapa bakteri yang hidup bebas dapat memperbaiki nitrogen sebagai nitrogen organik. Sebuah contoh dari bakteri pengikat nitrogen adalah bakteri Rhizobium mutualistik, yang hidup dalam nodul akar kacang-kacangan. Spesies ini diazotrophs. Sebuah contoh dari hidup bebas bakteri Azotobacter.
2.      Industri fiksasi nitrogen : Di bawah tekanan besar, pada suhu 600 C, dan dengan penggunaan katalis besi, nitrogen atmosfer dan hidrogen (biasanya berasal dari gas alam atau minyak bumi) dapat dikombinasikan untuk membentuk amonia (NH3). Dalam proses Haber-Bosch, N2 adalah diubah bersamaan dengan gas hidrogen (H2) menjadi amonia (NH3), yang digunakan untuk membuat pupuk dan bahan peledak.
3.      Pembakaran bahan bakar fosil : mesin mobil dan pembangkit listrik termal, yang melepaskan berbagai nitrogen oksida (NOx).
4.      Proses lain: Selain itu, pembentukan NO dari N2 dan O2 karena foton dan terutama petir, dapat memfiksasi nitrogen.

·         REDUKSI NITROGEN
1.      Amonifikasi
Jika tumbuhan atau hewan mati, nitrogen organik diubah menjadi amonium (NH4+) oleh bakteri dan jamur.
2.      Nitrifikasi
Konversi amonium menjadi nitrat dilakukan terutama oleh bakteri yang hidup di dalam tanah dan bakteri nitrifikasi lainnya. Tahap utama nitrifikasi, bakteri nitrifikasi seperti spesies Nitrosomonas mengoksidasi amonium (NH4 +) dan mengubah amonia menjadinitrit (NO2-). Spesies bakteri lain, seperti Nitrobacter, bertanggung jawab untuk oksidasi nitrit menjadi dari nitrat (NO3-). Proses konversi nitrit menjadi nitrat sangat penting karena nitrit merupakan racun bagi kehidupan tanaman.
Proses nitrifikasi dapat ditulis dengan reaksi berikut ini :
1.         NH3 + CO2 + 1.5 O2 + Nitrosomonas → NO2- + H2O + H+
2.         NO2- + CO2 + 0.5 O2 + Nitrobacter → NO3-
3.         NH3 + O2 → NO2− + 3H+ + 2e−
4.         NO2− + H2O → NO3− + 2H+ + 2e
3.      Denitrifikasi
Denitrifikasi adalah proses reduksi nitrat untuk kembali menjadi gas nitrogen (N2), untuk menyelesaikan siklus nitrogen. Proses ini dilakukan oleh spesies bakteri seperti Pseudomonas dan Clostridium dalam kondisi anaerobik. Mereka menggunakan nitratsebagai akseptor elektron di tempat oksigen selama respirasi. Fakultatif anaerob bakteri ini juga dapat hidup dalam kondisi aerobik.
Denitrifikasi umumnya berlangsung melalui beberapa kombinasi dari bentuk peralihan sebagai berikut:
NO3− → NO2− → NO + N2O → N2 (g)
Proses denitrifikasi lengkap dapat dinyatakan sebagai reaksi redoks:
2        NO3− + 10 e− + 12 H+ → N2 + 6 H2O
4.      Oksidasi Amonia Anaerobik
Dalam proses biologis, nitrit dan amonium dikonversi langsung ke elemen (N2) gas nitrogen. Proses ini membentuk sebagian besar dari konversi nitrogen unsur di lautan. Reduksi dalam kondisi anoxic juga dapat terjadi melalui proses yang disebut oksidasi amonia anaerobik
NH4+ + NO2− → N2 + 2 H2O.


·         PENYERAPAN NITROGEN
§  Anasir hara nitrogen (N) diserap perakaran tanaman dalam bentuk anion nitrat (NO3-), kation amonium (N4+) dan bahan lebih kompleks, seperti asam amino larut atmosphere dan asam nukleik.
§  Setiap jenis tanaman mempunyai kecenderungan khusus untuk menggunakan bentuk ion nitrogen yang dibutuhakannya dan kecendrungan ini dapat berubah oleh cause lingkungan.
§  Umumnya tanaman mampu menyerap dan menggunakan nitrat dan amonium.
§  Tanaman lahan atusan lebih banyak menyerap N dalam bentuk anion nitrat,
§  sedangkan tanman padi sawah lebih banyak menyerap N-NH4+.

·         SIFAT FISIS DAN SIFAT KIMIA NITROGEN

Nitrogen adalah zat komponen penyusun utama atmasfer bumi. Udara terdiri atas 78% volume nitrogen (N2). Nitrogen adalah gas yang tidak berwarna, tidak berbau, dan tidak berasa. Nitrogen dalam deret kimia termasuk kedalam  nonmetals, termasuk golongan VA, periode 2, dan blok p. Penampilanya berupa colorless.
Memiliki massa atom 14,0067 g/mol dengan massa atom 7( 1s2s2  3s3). Selain itu adapun ciri fisik dari nitrogen seperti berfasa gas, bermassa jenis 1,251 g/L, titik leburnya 63,15 K, titik didih 77,36, titik kritisnya 126,21 K. Nitrogen cair mendidih pada -196 ­­0c, dan membeku pada -2100C. Sruktur dari gas nitrogen adalah berupa Kristal hexagonal. Kelektronegatifan gas nitrogen menduduki peringkat ke-3 setelah flour dan oksigen. Gas nitrogen termasuk kedalam gas yang inert ( tidak reaktif ). Hal ini disebabkan oleh besarnya energi ikatan antara ikatan rangkap tiga N      N, nitrogen digunakan sebagai atmosfer inert untuk suatu proses / sistem yang terganggu oleh oksigen, misalnya dalam industri elektronika dan juga Bilangan okdidasi nitrogen bervariasi dari -3 sampai +5, sebagaimana dapat dilihat dari tabel berikut ini :

Bilangan oksidasi
Contoh senyawa
-3
NH3 ( amoniak )
-2
NH4( Ion amonium )
-1
NH2OH  ( Hidroksilamin )
0
N( gas nitrogen )
+1
N2O( dinitrogen monoksida)
+2
NO(Nitrogen oksida)
+2
N2O3( nitrogen trioksida )
+3
HNO2( asam nitrit )
+4
NO nitrogen dioksida )
N2O4( dinitrogen terra oksida )
+5
N2O(nitrogen pentaoksida )
HNO( asam nitrat )


          
  Banyak senyawa nitrogen yang memiliki entalpi pembentukan yang positiv. Reaksi – reaksi gas nitrogen harus berlangsung dalam kondisi khusus, misalnya suhu dan tkanan tinggi, dibantu oleh suatu katalis dengan menggunakan energi listrik, atau diuraikan oleh mikroorganisme tertentu. Proses pengubahan nirogen menjadi senyawa –senyawa yang dikenal sebagai proses fiksasi nitrogen. Ketika kita bernapas, gas nitrogen bersama udara masuk dan keluar paru-paru tanpa mengalami perubahan sedikitpun. Meskipun setiap saat kita senantiasa berenang dalam lautan nitrogen, tubuh kta tidak dapat mengambil nitrogen secara langsung dari udara. Nitrogen dalam yubuh kita berasal dari makanan yang kita makan , bukan dari udara yang kita irup

·         NITROGEN DALAM PERINDUSTRIAN

Peranan nitrogen dalam perindustrian relatif besar dan industri yang menggunakan unsur dasar nitrogen sebagai bahan baku utamanya disebut pula sebagai industri nitrogen. Nitrogen yang berasal dari udara merupakan komponen utama dalam pembuatan pupuk dan telah banyak membantu intensifikasi produksi bahan makanan di seluruh dunia. Pengembangan proses fiksasi nitrogen telah berhasil memperjelas berbagai asas proses kimia dan proses tekanan tinggi serta telah menyumbang banyak perkembangan di bidang teknik kimia.
Sebelum adanya proses fiksasi (pengikatan) nitrogen secara sintetik, sumber utama nitogen untuk keperluan pertanian hanyalah bahan limbah dan kotoran hewan, hasil dekomposisi dari bahan-bahan tersebut serta amonium sulfat yang didapatkan dari hasil sampingan pembuatan kokas dari batubara. Bahan-bahan seperti ini tidak mudah ditangani belum lagi jumlahnya yang tidak mencukupi semua kebutuhan yang diperlukan.
Salpeter Chilisalpeter dari air kencing hewan dan manusia, dan amonia yang dikumpulkan dari pembuatan kokas menjadi penting belakangan ini tetapi akhirnya disisihkan lagi oleh amonia sintetik dan nitrat. Amonia merupakan bahan dasar bagi pembuatan hampir semua jenis produk yang memakai nitrogen.

·         ASPEK KIMIAWI ATOM NITROGEN
Atom nitrogen dengan konfigurasi elektronik 1s2 2s3 2p3 dapat mencapai konfigurasi electron valensi penuh menurut empat Proses yaitu :
1. Penangkapan electron untuk membentuk anion nitrida (N3-); ion ini hanya terdapt pada senyawa-senyawa nitrida mirip-garam dari logam-logam yang sangat elektropositif (seperti ALKALI).
2. Pembentukan pasangan electron ikatan sebagai tunggal seperti NH3 dan ikatan ganda 3 seperti dalam N2 atau rngkap dua seperti dalam gugus _N=N_
3. Pembentuka pasangan elektron ikatan disertai penangkapan elektron seperti dalam NH2 - ; [_N=N_]-; dan NH2-, [H-N]2-.
4. Pembentukan pasangan elektron ikatan disertai pelepasan elektron seperti dalam NH4 + dan ion-ion ammonium tersubtitusi [NR4]+. Namun demikian, ada beberapa senyawa nitrogen yang stabil dengan konfigurasi yang tidak penuh, seperti dalam NO, NO2, dan nitroksida, dalam senyawa-senyawa ini terdapat elektron yang tidak berpasangan (Sugiyarto,2001:192).

Sifat Anomali Nitrogen
a) Ikatan tunggal
Nitrogen dengan 3 ikatan tunggal terdapat dalam senyawa NR3 ( R= H, alkil) yang mempunyai bentuk piramida Segitiga. Terjadinya ikatan dapat diterngkan melalui pembentukan orbital Hibrida sp3 dengan pasangan elektron non ikatan atau pasanggan elektron menyendiri menepati posisi salah stu dari keempat sudut struktur tetrahedron; dengan demikian bentuk molekul yang sesungguhnya menjadi tanpak sebagai piramida segitiga. Dengan adanya elektron non ikatan, semua senyawa NR3 bertindak sebagai basa lewis (donor pasangan elektron). Energy semua ikatan tunggal N-N relative sangat lemah. Jika di bandingkan dengan energy ikatan tunggal C-C, terdapat perbedaan yang sangat mencolok. Perbandingan ini untuk unsur-unsur dalam priode 2 adalah 350, 160, 140, 150 Kj mol-1, yang secara berurutan menunjuk pada energy ikatan tunggal dalam senyawa H3C-CH3, H2N- NH2, HO-OH dan F-F. perbedaan ini mungkin adanya 4 hubungan pengaruh tolakan antar pasangan elektron nonikatan, yaitu tidak ada.,ada sepasang, dua pasang, dan tiga pasang untuk masing-masing senyawa tersebut. Rendahnya energy ikatan tunggal ini, tidak seperti karbon, berakibat kecil kecenderungan pembentukan rantai bagi atom nitrogen (Sugiyarto,2001:193).

·         SENYAWAAN NITROGEN
Senyawaan nitrogen terbagi manjadi :
1. Nitrida ( senyawa metal nitrogen )
2. Nitrida Hidrida ( NH3, garam amonium, hidrasin N2H4, hidroksilamin NH2OH )
3. Oksida nitrogen ( N2O, NO, NO2, N2O5 )
4. Ion nitronium ( NO2 + )
5. Asam nitrit
Hidrida utama nitrogen ialah amonia (NH3) walaupun hidrazina (N2H4) juga banyak ditemukan. Amonia bersifat basa dan terlarut sebagian dalam air membentuk ion ammonium (NH4 +). Amonia cair sebenarnya sedikit amfiprotik dan membentuk ion ammonium dan amida (NH2 -); keduanya dikenal sebagai garam amida dan nitrida (N3-), tetapi terurai dalam air. Gugus bebas amonia dengan atom hidrogen tunggal atau ganda dinamakan amina. Rantai, cincin atau struktur hidrida nitrogen yang lebih besar juga diketahui tetapi tak stabil.
1) Amonia
Amonia adalah senyawa kimia dengan rumus NH3. Biasanya senyawa ini didapati berupa gas dengan bau tajam yang khas (disebut bau amonia). Walaupun ammonia 6 memiliki sumbangan penting bagi keberadaan nutrisi di bumi, amonia sendiri adalah senyawa kaustik dan dapat merusak kesehatan. Administrasi Keselamatan dan Kesehatan Pekerjaan Amerika Serikat memberikan batas 15 menit bagi kontak dengan ammonia dalam gas berkonsentrasi 35 ppm volum, atau 8 jam untuk 25 ppm volum. Kontak dengan gas amonia berkonsentrasi tinggi dapat menyebabkan kerusakan paru-paru dan bahkan kematian. Sekalipun amonia di AS diatur sebagai gas tak mudah terbakar, amonia masih digolongkan sebagai bahan beracun jika terhirup, dan pengangkutan amonia berjumlah lebih besar dari 3.500 galon (13,248 L) harus disertai surat izin. Amonia yang digunakan secara komersial dinamakan amonia anhidrat. Istilah ini menunjukkan tidak adanya air pada bahan tersebut. Karena amonia mendidih di suhu -33 °C, cairan amonia harus disimpan dalam tekanan tinggi atau temperatur amat rendah. Walaupun begitu, kalor penguapannya amat tinggi sehingga dapat ditangani dengan tabung reaksi biasa di dalam sungkup asap. "Amonia rumah" atau amonium hidroksida adalah larutan NH3 dalam air. Konsentrasi larutan tersebut diukur dalam satuan baumé. Produk larutan komersial amonia berkonsentrasi tinggi biasanya memiliki konsentrasi 26 derajat baumé (sekitar 30 persen berat amonia pada 15.5 °C).Amonia yang berada di rumah biasanya memiliki konsentrasi 5 hingga 10 persen berat amonia.
Amonia
Umum
Nama sistematis
Amonia
Azana
Nama lain
Hidrogen nitrida
spiritus Hartshorn
Nitrosil
Vaporol
Rumus molekul NH3
Massa molar 17.0306 g/mol
Penampilan
Gas tak berwarna
berbau tajam
Nomor CAS [7664-41-7]
Sifat-sifat
Massa jenis and fase 0.6942 g/L, gas.
Kelarutan dalam air 89.9 g/100 ml pada 0 °C.
Titik lebur -77.73 °C (195.42 K)
Temperatur autosulutan 651 °C
Titik didih -33.34 °C (239.81 K)
Keasaman (pKa) 9.25
Kebasaan (pKb) 4.75

Struktur
Bentuk molekul piramida segitiga
Momen dipol 1.42 D
Sudut ikatan 107.5°

Bahaya
Bahaya utama berbahaya, kaustik, korosif
NFPA 704
1
3
0
8
Flash point Tidak ada
Pernyataan R/S
R: R10, R23, R34, R50
S: (S1/2), S16, S36/37/39,
S45, S61
Angka RTECS BO0875000

Senyawa berhubungan
Ion lain
Amonium (NH4+)
hidroksida (NH4OH)
klorida (NH4Cl)
Senyawa lain
Hidrazin
Asam hidrazoat
Hidroksilamina
kloroamina
(www.wikipedia.org)

Sifat fisik dan kimia
Amonia umumnya bersifat basa (pKb=4.75), namun dapat juga bertindak sebagai asam yang amat lemah (pKa=9.25). NH3 merupakan molekul polar, berbentuk piramid dengan tiga atom hydrogen menempati dasar piramid dan memiliki sepasang elektron bebas pada puncaknya (atom N), menyebabkan senyawa ini mudah terkondensasi (suhu kondensasi -33oC) menjadi cairan dengan kekuatan besar sebagai pelarut. Dalam banyak hal, ammonia cair merupakan pelarut yang mirip dengan air dan mampu melarutkan berbagai macam garam. Selain itu, 9 ammonia mempunyai sifat yang unik dalam hal melarutkan logam-logam alkali dan alkali tanah, yakni menghasilkan larutan yang mengandung elektron tersolvasi. Gas ammonia sangat larut dalam air, karena baik NH3 maupun H2O adalah molekul-molekul polar.

Kelimpahan
Senyawa nitrogen yang utama adalah ammonia, NH3, yang terdapat di atmosfir dalam jumlah yang sangat sedikit, terutama sebagai produk peruraian bahan yang mengandung nitrogen dari hewan dan tumbuhan. Proses ini merupakan cara yang paling ekonomis untuk fiksasi nitrogen, yakni konversi nitrogen di atmosfir menjadi senyawa yang berguna.

Pembuatan
Pada proses Haber, ammonia disintesis dengan cara melewatkan campuran nitrogen dan hidrogen di atas permukaan katalisator (umumnya besi oksida) pada suhu 500oC dan tekanan 1000 atm, yang rata-rata dapat mengkonversi 50% N2 menjadi NH3. N2(g) + 3H2(g) = 2NH3(g) + 22 kkal

Kegunaan
1. Sebagai pupuk (kompos maupun urea)
2. Disinfectan
3. Bahan bakar
4. Pelarut senyawa organik, anorganik, dan logam
5. Bahan pembuatan asam nitrat (www.wikipedia.org)
2) Asam Nitrat
Asam nitrat, HNO3 merupakan salah satu asam anorganik yang penting dalam industri dan laboratorium, sehingga diproduksi dalam jumlah yang banyak sekali. 10 Pembuatan asam nitrat ini pada prinsipnya menggunakan cara oksidasi katalitik ammonia pada proses Oswald

Pembuatan
Asam nitrat adalah merupakan satu jenis bahan kimia industri yang penting, diproduksi dalam skala besar dengan proses Haber-Bosch dan biasanya sangat erat dengan produksi ammonia, NH3. Langkah pertama adalah oksidasi NH3 menjadi NO. Setelah pendinginan, NO dicampur dengan udara dan diabsorbsi di dalam suatu aliran air. Reaksi-reaksi di bawah ini adalah langkah-langkah reaksi menghasilkan HNO3 ≈ 60% (berat) dan konsentrasi-nya dapat dinaikkanmenjadi 68% dengan cara destilasi, proses ini dikenal dengan proses Oswald :
4 NH3(g) + 5 O2(g) → 4 NO(g) + 6 H2O(g)
2 NO(g) + O2(g) → 2 NO2(g)
3 NO2(g) + H2O(l) → 2 H+
(aq) + 2 NO3 -(aq) + NO(g)
Pada tahap pertama, campuran NH3 dan udara dilewatkan melalui kumparan platina yang dipanaskan pada temperatur 800oC. Pada pendinginan, produk nitrogen oksida (NO) dioksidasi menjadi nitrogen dioksida (NO2), yang kemudian mengalami disproporsionasi dalam larutan membentuk asam nitrat dan NO. Dengan cara memberikan konsentrasi O2 yang cukup tinggi, NO sisa akan diubah menjadi NO2 dan reaksi terakhir akan bergeser ke arah kanan. Untuk mendapatkan asam 100% dilakukan destilasi HNO3 yang volatil. Asam nitrat murni dapat dibuat di laboratorium dengan cara menambahkan H2SO4 ke KNO3 dan mendestilasi hasil reaksi in vacuo. Asam nitrat adalah cairan tak berwarna, tetapi harus disimpan dibawah temperatur 273 K untuk mencegah dekomposisi yang menyebabkan asam berwarna kuning 4 HNO3→ 4 NO2 + 2 H2O + O2

Sifat-sifat
Dalam larutan aqueous, HNO3 bertindak sebagai suatu asam kuat yang menyerang kebanyakan logam-logam (yang sering terjadi lebih cepat jika terdapat HNO2 dalam jumlah trace), kecuali emas (Au) dan logam-logam golongan platinum; dimana 11 besi (Fe) dan krom (Cr) mengalami passivasi oleh HNO3 (semacam lapisan film tipis sehingga logam-logam ini tidak bisa diserang).
Bila timah, arsen dan beberapa logam-logam golongan-d direaksikan dengan HNO3, maka akan dihasilkan oksida-oksida logam-logam tersebut, tetapi jika HNO3 direaksikan dengan logam-logam lain akan dihasilkan nitrat-nitrat. Hanya Mg, Mn, dan Zn yang menghasilkan gas hidrogen jika direaksikan dengan HNO3 dengan konsentrasisangat encer. Jika logam tersebut merupakan reduktor yang lebih kuat daripada H2, makareaksi dengan HNO3 akan mereduksi asam menjadi N2, NH3.NH2OH atau N2O,sedangkan logam lain akan menghasilkan NO atau NO23 Cu(s) + 8HNO3(aq, encer) → 3 Cu(NO3)2(aq) + 4 H2O(l) + 2 NO(g) Cu(s) + 4 HNO3(aq, pekat) → Cu(NO3)2(aq) + 2 H2O(l) + 2 NO2(g)(www.wikipedia.org)

3) Nitrida
Selain ammonia dan garam ammonium, nitrogen membentuk senyawa lain dengan bilangan oksidasi -3 yang meliputi nitrida seperti Na3N, Mg3N, dan TiN, yang sebagian besar dapat dibentuk langsung dari kombinasi unsur-unsurnya. Sebagian dari senyawa ini, misalnya, Na3N dan Mg3N, sangat reaktif dan bereaksi dengan air membebaskan ammonia. Tetapi TiN sangat inert dan digunakan sebagai bahan pembuatan wadah reaksi suhu tinggi. Senyawa nitrogen tri-iodida (NI3) dimasukkan kategori senyawa nitrogen dengan bilangan oksidasi -3, karena nitrogen lebih elektronegatif daripada iodium. Pada suhu kamar, NI3 adalah zat padat yang sangat mudah meledak, bahkan seekor lalat yang hinggap di atasnya dapat menyebabkan timbulnya ledakan.

4) Azida
Natrium azida dapat diperoleh dari reaksi : 3 NaNH2 + NaNO3  1750 NaN3 + 3 NaOH + NH3 12 Azida-azida logam berat mudah meledak, misalnya timbal atau air raksa azida, telah digunakan dalam sumbat bahan peledak. Asam azida murni, HN3, adalah cairan yang mudah  meledak dan berbahaya (www.wikipedia.org).

5) Hidrazin
Hidrasin, N2H4, dapat dianggap sebagai turunan dari ammonia dengan penggantian satu atom hidrogen oleh gugus NH2. Hidrasin adalah basa difungsi N2H4(aq) + H2O = N2H5 + + OH- K25 = 8,5 x 10-7 N2H5 + (aq) + H2O = N2H6 2+ + OH- K25 = 8,9 x 10-15 Dan dua deretan garam hidrasium dapat diperoleh. Garam N2H5 + dapat diperoleh dengan kristalisasi dari larutan aqua yang mengandung banyak kelebihan asam, karena garam ini biasanya kurang larut dibanding garam-garam monoasam. N2H4 anhidrat adalah cairan berasap dan tidak berwarna (titik didih 114oC) dan stabil ditinjau dari sifat endotermisnya (ΔHof = 50 kJ mol-1), dapat terbakar di udara dengan membebaskan panas N2H4(l) + O2(g) = N2(g) + 2 H2O(l0 ΔHo = -622 kJ mol-1 Hidrasin aqua adalah suatu reduktor kuat dalam larutan basa, dalam keadaan normal dapat teroksidasi menjadi nitrogen. Hidrasin dibuat dengan interaksi larutan ammonia dengan natrium hipoklorit
NH3 + NaOCl → NaOH + NH2Cl (cepat)
NH3 + NH2Cl + NaOH → N2H4 + NaCl + H2O
Tetapi dalam hal ini terjadi persaingan reaksi yang agak cepat segera setelah hidrasin terbentuk 2 NH2Cl + N2H4 → 2 NH4Cl + N2
Untuk mengatasi hal ini, maka perlu ditambahkan gelatin (www.wikipedia.org).

6) Hidroksilamin
Hidroksilamin, NH2OH adalah basa yang lebih lemah dibanding NH3 NH2OH(aq) + H2O = NH3OH+ OH- K25 = 6,6 x 10-9 Hidroksilamin dibuat dengan reduksi nitrat atau nitrit baik dengan elektrolisis maupun dengan SO2 dalam keadaan yang dikontrol. Hidroksilamin adalah padatan putih yang tidak stabil. Dalam larutan aqua atau sebagai garamnya [NH3OH]Cl atau [NH3OH]2SO4, digunakan sebagai reduktor (www.wikipedia.org).
7) N2O dan N2O4
Jika asam nitrat pekat direduksi oleh logam (misalnya Cu), maka akan dihasilkan asap coklat berupa gas nitrogen dioksida, NO2. Molekul ini bersifat paramagnetik karena mengandung jumlah elektron valensi ganjil (lima dari nitrogen dan enam dari masingmasing oksigen). Jika gas coklat ini didinginkan, warnanya memudar dan keparamagnetannya hilang. Observasi ini ditafsirkan sebagai petunjuk bahwa dua molekul NO2 berpasangan (dimerisasi) membentuk satu molekul dinitrogen tetroksida, N2O4, dalam kesetimbangan 2 NO2(g) = N2O4(g) + 14,6 kkal sedemikian pada 60oC dan tekanan 1 atm separuh nitrogen berupa NO2 dan separuhnya lagi berupa N2O4. Kalau suhu dinaikkan, dekomposisi N2O4 lebih disukai. Campuran NO2-N2O4 sangat beracun dan merupakan oksidator kuat. Sedangkan campuran N2O4 cair dan derivate hidrazin telah digunakan sebagai bahan bakar pesawat ruang angkasa Apollo 12 dalam missi penerbangannya ke bulan, karena bahan bakar ini cocok untuk melakukan landing dan take off di permukaan bulan. N2O4 adalah merupakan oksidator kuat dan bila mengadakan kontak dengan suatu derivate hidrazin, misalnya MeNHNH2 dengan segera akan teroksidasi seperti reaksi
berikut:
5N2O4 + 4MeNHNH2 → 9N2 + 12H2O + 4CO2
dan reaksi ini sangat eksotermik yang pada temperatur operasi semua produk reaksi adalah gas. Seperti telah disebut dalam kaitannya dengan proses Ostwald, NO2, atau lebih 14 tepatnya campuran NO2 dan N2O4, larut dalam air membentuk HNO3 dan NO

8) N2O5
Selain pada asam nitrat dan nitrat, nitrogen dengan bilangan oksidasi +5 ditemui pada nitrogen pentoksida, N2O5. Senyawa ini merupakan asam anhidrat dari HNO3 yang dapat dihasilkan dari reaksi asam nitrat pekat dengan senyawa dehidrator kuat seperti fosfor oksida, P4O10. Pada suhu kamar, N2O5 berupa padatan putih yang mengalami dekomposisi secara lambat menjadi NO2 dan O2. Dengan air, N2O5 bereaksi sangat hebat membentuk HNO3 (www.wikipedia.org).
















BAB III
TEORI NITROGEN
FAKTA-FAKTA MENARIK TENTANG NITROGEN

Fakta menarik tentang Nitrogen sekitar 2,5 persen dari berat organisme hidup berasal dari nitrogen dalam molekul organik. Banyak molekul hidup mengandung nitrogen. Itu merupakan unsur paling melimpah keempat dalam tubuh manusia. Nitrogliserin senyawa nitrogen memiliki dua kegunaan yang agak berbeda: meledakkan hal-hal, dan bantuan dari angina, jantung yang mengancam kehidupan. Alfred Nobel didanai tahunan Hadiah Nobel dengan kekayaan ia terbuat dari manufaktur dinamit, bahan utama yang adalah nitrogliserin. Ironisnya, di tahun-tahun berikutnya ia menderita angina dan mengambil nitrogliserin untuk menghilangkan gejala.(6) Neptunus % u2019s satelit Triton memiliki lima mil tinggi, bertenaga nitrogen Geyser. Seperti bumi, Triton % u2019s atmosfer adalah terutama nitrogen, tetapi Triton begitu dingin nitrogen duduk di permukaan sebagai sekeras batu padat. Nitrogen padat memungkinkan cahaya lemah tiba dari matahari melewati itu. Gelap ketidakmurnian dalam nitrogen es atau batu-batu yang lebih gelap di bawah es menghangatkan sedikit di


 cno-cycle.gif

Nitrogen dan CNO siklus ketika alam semesta % u2019s generasi pertama bintang lahir, mereka terdapat hanya unsur-unsur yang dibuat pada saat big bang: hidrogen, helium, dan sejumlah kecil litium. Sebagai bintang-bintang ini dibakar, mereka disintesis unsur-unsur berat seperti karbon. Supernova kemudian menyebar unsur-unsur yang lebih berat ke dalam galaksi di mana lebih banyak bintang lahir. Karbon dari supernova memainkan peran penting dalam cara banyak bintang generasi kedua dan lebih tinggi membakar. Dalam bintang massa yang lebih tinggi daripada sekitar 1,1% u2013 1,5 kali bahwa matahari, karbon-12 mengatalisis fusi hidrogen untuk u2013% helium yaitu karbon-12 mengambil bagian dalam reaksi fusi, tetapi tidak dikonsumsi oleh itu. Seperti yang Anda lihat di sebelah kiri, karbon-12 dibuat ulang pada akhir setiap siklus, hasil bersih yang adalah bahwa empat inti hidrogen dikonsumsi dan satu inti helium diproduksi. Reaksi ini disebut Siklus CNO.
KEGUNAAN DAN BAHAYA
        KEGUNAAN DARI SENYAWA-SENYAWA NITROGEN :
—  Dalam bentuk mmonia niotrogen , digunakan sebagai  ahan pupuk, obat-obatan, asam nitrat, urea, hidrasin, amin, dan pendingin.
—  Asam nitrat digunakan dalam pembuatan zat pewarna dan bahan peledak.
—  Nitrogen sering digunakan jika diperlukan lingkungan yang inert, misalnya dalam bola lampu listrik untuk mencegah evaporasi filamen
—  Sedangkan nitrogen cair banyak digunakan sebagai refrigerant (pendingin) yang sangat efektif karena relatif murah
—  Banyak digunakan oleh laboratorium-laboratorium medis dan laboratoriumlaboratorium penelitian sebagai pengawet bahan-bahan preservatif untuk jangka waktu yang sangat lama, misalnya pada bank sperma, bank penyimpanan organ-organ tubuh manusia, bank darah.

BAHAYA DARI SENYAWA-SENYAWA NITROGEN:
—  Jika oksida nitrat (N2O) mencapai stratosfer, ia membantu merusak lapisan ozon, sehingga menghasilkan tingkat radiasi UV yang lebih tinggi dan risiko kanker kulit serta katarak yang meningkat.
—  Nitrogen oksida (N2O) terlarut dalam air atmosferik membentuk hujan asam, yang mengkorosi batuan dan barang logam dan merusak bangunan-bangunan
—  Nitrogen oksida (N2O) berkontribusi bagi pemanasan global.Walaupun konsentrasi oksida nitrat di atmosfer sangat rendah dibanding karbon dioksida, potensi pemanasan global oksida nitrat adalah sekitar 300 kali lebih besar.
—  Kelebihan nitrogen di perairan menyebabkan berkurangnya kadar oksigen dalam air sehingga menyebabkan kepunahan kehidupan di perairan.











BAB IV
KESIMPULAN DAN PENUTUP
KESIMPULAN
·         Pengertian
Nitrogen merupakan suatu bagian dari sel hidup dan bagian utama dari semua protein, enzim dan proses metabolik yang disertakan pada sintesa dan perpindahan energi.
·         Ciri fisik
ciri fisik dari nitrogen seperti berfasa gas, bermassa jenis 1,251 g/L, titik leburnya 63,15 K, titik didih 77,36, titik kritisnya 126,21 K. Nitrogen cair mendidih pada -196 ­­0c, dan membeku pada -2100C
·         Senyawaan nitrogen :
1. Nitrida ( senyawa metal nitrogen )
2. Nitrida Hidrida ( NH3, garam amonium, hidrasin N2H4, hidroksilamin NH2OH )
3. Oksida nitrogen ( N2O, NO, NO2, N2O5 )
4. Ion nitronium ( NO2 + )
5. Asam nitrit

·         Peranan nitrogen terhadap pertumbuhan tanaman diantaranya adalah:
1.  Memacu pertumbuhan tanaman secara umum terutama pada fase vegetative, berperan dalam pembentukan klorofil, dan merangsang perkembang biakan mikroorganisme.
2. Peranan nitrogen dalam tanaman yaitu mensintesis karbohidrat menjadi protein dan protoplasma (melalui mekanisme respirasi) yang berperan dalam pembentukan jaringan fegetatif tanaman.
3. Peranan nitrogen dalam tanah yaitu nitrogen diserap tanaman dalam bentuk nitrat (NO3) dan ammonium (NH4), akan tetapi nitrat akan segera tereduksi menjadi amonium melalui enzim yang mengandung Mo.

·         Peranan nitrogen dalam perindustrian :
Peranan nitrogen dalam perindustrian relatif besar dan industri yang menggunakan unsur dasar nitrogen sebagai bahan baku utamanya disebut pula sebagai industri nitrogen. Nitrogen yang berasal dari udara merupakan komponen utama dalam pembuatan pupuk dan telah banyak membantu intensifikasi produksi bahan makanan di seluruh dunia. Pengembangan proses fiksasi nitrogen telah berhasil memperjelas berbagai asas proses kimia dan proses tekanan tinggi serta telah menyumbang banyak perkembangan di bidang teknik kimia.

PENUTUP
Alhamdulillahirobil’alamin akhirnya makalah ini telah selesai di buat.
Kami sebagai penyusun makalah ini berharap agar bapak bisa menerima makalah kami ini,
Mohon maaf bila ada kekurangan dan kesalahan,haraf bapak bisa memakluminya.
Sekian dan terimakasih .
















DAFTAR PUSTAKA

http://www.wikipedia.org















Posting Lebih Baru Beranda

0 komentar:

Posting Komentar